Top thingy left
 
EVENTO DE ONDAS GRAVITACIONAIS PROVAVELMENTE ASSINALOU A FORMAÇÃO DE UM BURACO NEGRO
5 de junho de 2018

 


Depois de duas estrelas separadamente explodirem como supernovas, dois núcleos ultradensos (isto é, estrelas de neutrões) ficaram para trás. Estas duas estrelas de neutrões estavam tão perto uma da outra que a radiação de ondas gravitacionais puxou-as na direção uma da outra até que se fundiram e colapsaram num buraco negro. A impressão de artista mostra uma parte fundamental do processo que formou este novo buraco negro, à medida que as duas estrelas de neutrões rodavam uma em torno da outra enquanto se fundiam. O material púrpura ilustra detritos da fusão.
Crédito: ilustração - CXC/M. Weiss; raios-X - NASA/CXC/Trinity University/D. Pooley et al.
(clique na imagem para ver versão maior)

 

A espetacular fusão de duas estrelas de neutrões que gerou ondas gravitacionais, anunciada no ano passado, provavelmente fez ainda outra coisa: deu azo a um buraco negro. Este buraco negro recém-formado será o buraco negro de menor massa já encontrado.

Um novo estudo analisou dados do Observatório de raios-X Chandra da NASA obtidos nos dias, semanas e meses após a deteção das ondas gravitacionais pelo LIGO (Laser Interferometer Gravitational Wave Observatory) e raios-gama pela missão Fermi da NASA no dia 17 de agosto de 2017.

Embora quase todos os telescópios à disposição dos astrónomos profissionais tenham observado esta fonte, conhecida oficialmente como GW170817, os raios-X do Chandra são cruciais para entender o que aconteceu depois da colisão entre as duas estrelas de neutrões.

A partir dos dados do LIGO, os astrónomos têm uma boa estimativa de que a massa do objeto resultante da fusão das estrelas de neutrões ronda as 2,7 massas solares. Isto coloca-o numa "corda bamba" de identidade, implicando que ou é a estrela de neutrões mais massiva alguma vez encontrada ou o buraco negro de massa mais baixa já descoberto. Os detentores anteriores do recorde para esta última categoria astronómica não têm menos que quatro ou cinco vezes a massa do Sol.

"Embora as estrelas de neutrões e os buracos negros sejam misteriosos, nós estudámos muitos por todo o Universo usando telescópios como o Chandra," afirma Dave Pooley da Trinity University em San Antonio, no estado norte-americano do Texas, que liderou o estudo. "Isso significa que temos dados e teorias sobre o comportamento de tais objetos na gama dos raios-X."

As observações do Chandra são reveladoras, não apenas pelo que mostraram, mas também pelo que não mostraram. Se o resultado da fusão das duas estrelas de neutrões fosse uma estrela de neutrões mais massiva, então os astrónomos esperariam que girasse rapidamente e produzisse um campo magnético muito forte. Isto, por sua vez, teria formado uma bolha de partículas altamente energéticas que resultaria numa emissão de raios-X brilhantes. Em vez disso, os dados do Chandra mostram níveis de raios-X que são várias magnitudes mais fracos do que o esperado para uma estrela de neutrões e para uma bolha associada de partículas de alta energia, sugerindo ao invés a formação de um buraco negro.

Se confirmado, este resultado mostra que uma receita para produzir um buraco negro às vezes pode ser complicada. No caso de GW170817, seriam necessárias duas explosões de supernova para deixar para trás duas estrelas de neutrões numa órbita suficientemente íntima para a radiação de ondas gravitacionais unir as estrelas de neutrões.

"Podemos ter respondido a uma das perguntas mais básicas sobre este evento deslumbrante: o que é que produziu?" comenta o coautor Pawan Kumar da Universidade do Texas em Austin. "Há muito tempo que os astrónomos suspeitam que as fusões de estrelas de neutrões formariam um buraco negro e produziriam pulsos de radiação, mas não possuíamos até agora evidências fortes."

Uma observação do Chandra, dois a três dias após o evento, não conseguiu detetar uma fonte, mas observações subsequentes 9, 15 e 16 dias após o evento, resultaram em deteções. A fonte deslizou pouco tempo depois para trás do Sol, mas cerca de 110 dias após o evento o Chandra ainda continuou a observar um aumento de brilho, seguido por uma intensidade comparável em raios-X cerca de 160 dias depois.

Ao comparar as observações do Chandra com aquelas do VLA (Karl G. Jansky Very Large Array), Pooley e colaboradores explicam a emissão de raios-X observada como devida inteiramente à onda de choque - semelhante a um boom sónico de um avião supersónico - da fusão que esmagou o gás circundante. Não existem sinais de raios-X resultantes de uma estrela de neutrões.

A conclusão da equipa de Pooley pode ser testada por observações futuras em raios-X e no rádio. Se o remanescente for uma estrela de neutrões com um campo magnético forte, então a fonte deve ficar muito mais brilhante em raios-X e no rádio daqui a aproximadamente dois anos, quando a bolha de partículas altamente energéticas alcançar a onda de choque em desaceleração. Se for realmente um buraco negro, os astrónomos esperam que continue a ficar mais fraca do que o observado recentemente, à medida que a onda de choque enfraquece.

"GW170817 é um evento astronómico que continua a fornecer surpresas," comenta J. Craig Wheeler, coautor do estudo, também da Universidade do Texas. "Estamos a aprender muito sobre a astrofísica dos objetos mais densos conhecidos, somente com este único evento."

Se as observações subsequentes descobrirem uma estrela de neutrões muito massiva, tal descoberta desafiará as teorias da estrutura das estrelas de neutrões e quão massivas podem ficar.

"No início da minha carreira, os astrónomos só podiam observar estrelas de neutrões e buracos negros na nossa própria Galáxia, e agora estamos a observar estes objetos exóticos em todo o cosmos," comenta o coautor Bruce Gossan da Universidade da Califórnia em Berkeley. "Que momento emocionante para estar vivo, para ver instrumentos como o LIGO e o Chandra a mostrarem tantas coisas excitantes que a natureza tem para oferecer."

O artigo que descreve este resultado aparece na última edição da revista The Astrophysical Journal Letters e está disponível online.

 


comments powered by Disqus

 

Links:

Núcleo de Astronomia do CCVAlg:
23/01/2018 - Fusão de estrelas de neutrões oferece um novo puzzle aos astrofísicos
19/01/2018 - Quão massivas podem ser as estrelas de neutrões?
09/01/2018 - Ondas gravitacionais medem o Universo
22/12/2017 - Observações rádio apontam para explicação provável de fenómenos de fusão de estrelas de neutrões
28/11/2017 - Novo método para medir o tamanho das estrelas de neutrões 
17/10/2017 - Telescópios do ESO observam primeira luz de uma fonte de ondas gravitacionais

Notícias relacionadas:
NASA (comunicado de imprensa)
ESA (comunicado de imprensa)
Artigo científico (arXiv.org)
Astronomy Now
PHYSORG
ScienceNews
Newsweek
Forbes
Gizmodo

GW170817:
Wikipedia

Estrelas de neutrões:
Wikipedia
Universidade de Maryland

Buraco negro:
Wikipedia

Ondas gravitacionais:
Wikipedia
Astronomia de ondas gravitacionais - Wikipedia
Ondas gravitacionais: como distorcem o espaço - Universe Today
Detetores: como funcionam - Universe Today
As fontes de ondas gravitacionais - Universe Today
O que é uma onda gravitacional (YouTube)

Observatório Chandra:
Página oficial (Harvard)
Página oficial (NASA)
Wikipedia

LIGO:
Página oficial
Caltech
Advanced LIGO
Wikipedia

Telescópio Espacial Fermi:
NASA
Wikipedia

VLA:
Página oficial
NRAO
Wikipedia

 
Top Thingy Right