Top thingy left
 
CERES FOI FORMADO NA ZONA MAIS FRIA DO SISTEMA SOLAR E LANÇADO PARA A CINTURA DE ASTEROIDES
24 de maio de 2022

 


O planeta anão Ceres, num mosaico captado pela missão Dawn da NASA. Os pontos brilhantes são reflexões produzidas por depósitos de gelo no fundo da cratera.
Crédito: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

 

Um estudo que visa reconstituir o processo de formação do planeta anão Ceres foi publicado por investigadores da Universidade Estadual Paulista (UNESP) e colaboradores na revista científica Icarus.

O trabalho foi realizado por Rafael Ribeiro de Sousa, professor do Programa de Pós-Graduação em Física, campus de Guaratinguetá. Também assinam o artigo o professor Ernesto Vieira Neto, que foi o orientador de Ribeiro de Sousa na sua investigação de doutoramento, e investigadores da Université Côte d’Azur, na França; da Rice University, nos Estados Unidos; e do Observatório Nacional no Rio de Janeiro.

Como explicam os autores, Ceres integra a cintura de asteroides, uma coleção de corpos celestes localizada entre as órbitas de Marte e Júpiter. De formato aproximadamente esférico, é o maior objeto na cintura, concentrando um-terço da sua massa total. O seu diâmetro, com quase mil quilômetros, é pouco maior do que um-terço do diâmetro da Lua. Com uma excentricidade de 0,09, tem uma órbita quase circular. E a inclinação da sua órbita em relação ao plano invariante do Sistema Solar, inferior a 10 graus, é bem maior do que a inclinação da órbita da Terra, que é de 1,57 graus.

A massa de Ceres é pequena demais para poder segurar, por atração gravitacional, uma atmosfera. Mas um facto notável é que os gelos de amónia e de água existentes à sua superfície evaporam com a incidência da luz solar. E a névoa formada dispersa-se pelo espaço. Os depósitos de gelo brilham muito no fundo das crateras. Não está excluída a hipótese de que possam abrigar alguma forma primitiva de vida. A missão Dawn, da NASA, a agência espacial norte-americana, que se aproximou bastante de Ceres e Vesta, mapeou essas crateras.

O núcleo do planeta anão é composto provavelmente por material pesado: ferro e silicatos. Mas o que diferencia Ceres dos objetos vizinhos é o seu manto de gelo de amónia e água. Como a maioria dos corpos da cintura de asteroides não tem amónia, a hipótese é a de que Ceres tenha sido formado mais para fora, na região mais fria que se estende para lá da órbita de Júpiter e, depois, lançado para a zona média da cintura devido à grande instabilidade gravitacional provocada pela formação dos planetas gasosos gigantes Júpiter e Saturno.

"A presença de gelo de amónia é uma forte evidência observacional de que Ceres possa ter sido formado na região mais fria do Sistema Solar, além da chamada 'Linha de Gelo', onde as temperaturas eram baixas o suficiente para ocorrer condensação e fusão de água e substâncias voláteis, como monóxido de carbono [CO], dióxido de carbono [CO2] e amónia [NH3]", diz Ribeiro de Sousa.

Hoje, a Linha de Gelo está localizada muito próximo da órbita de Júpiter. Porém, quando o Sistema Solar estava em formação, há 4,5 mil milhões de anos, a posição dessa zona variou de acordo com a evolução do disco de gás protoplanetário e a formação dos planetas gigantes. "A forte perturbação gravitacional provocada pelo crescimento desses planetas pode ter alterado a densidade, a pressão e a temperatura do disco protoplanetário, o que teria deslocado a Linha de Gelo. Essa perturbação no disco de gás protoplanetário teria feito com que planetas em crescimento, enquanto adquiriam gás e sólidos, migrassem para órbitas mais próximas do Sol", explica o professor Vieira Neto.

"No nosso trabalho, propusemos um cenário para explicar o porquê de Ceres ser tão diferente dos asteroides vizinhos. Nesse cenário, Ceres teria iniciado a sua formação numa órbita para lá de Saturno, onde a amónia era abundante. Durante o crescimento dos planetas gigantes, foi puxado para a cintura de asteroides, como um migrante do Sistema Solar externo e sobreviveu até hoje, durante 4,5 mil milhões de anos", afirma Ribeiro de Sousa.

Para comprovar tal hipótese, Ribeiro de Sousa e colaboradores realizaram um grande número de simulações computacionais da fase de formação dos planetas gigantes dentro do disco de gás protoplanetário que circundava o Sol. No modelo, foram consideradas no disco as presenças de Júpiter, Saturno, embriões planetários (precursores de Úrano e Neptuno) e uma coleção de objetos similares em tamanho e composição química a Ceres. A suposição foi a de que Ceres seria um objeto de tipo planetesimal. Estes são considerados os "blocos de construção" dos planetas e de outros corpos do Sistema Solar, como asteroides, cometas etc.

"Nas nossas simulações, verificamos que a fase de formação dos planetas gigantes não foi nada tranquila. Caracterizou-se por colisões gigantescas entre os precursores de Úrano e Neptuno, pela ejeção de planetas para fora do Sistema Solar e até mesmo pela invasão da região interna por planetas com massas maiores do que três vezes a massa da Terra. Além disso, a forte perturbação gravitacional espalhou objetos similares a Ceres por toda a parte. Alguns, com uma certa probabilidade, alcançaram a região da cintura de asteroides e adquiriram órbitas estáveis, capazes de sobreviver a outros eventos", conta o investigador.

Segundo Ribeiro de Sousa, três mecanismos principais atuaram para preservar esses objetos na região: a ação do gás, que amorteceu as excentricidades e as inclinações das suas órbitas; as ressonâncias dos seus movimentos médios com Júpiter, que os protegeram de ejeções e colisões causadas por esse planeta gigante; e encontros próximos com os planetas invasores, que espalharam os planetesimais para regiões mais internas e estáveis da cintura de asteroides.

"O nosso principal resultado indica que, no passado, houve no mínimo 3500 objetos do tipo Ceres, para lá da órbita de Saturno. E que, com esse número de objetos, o nosso modelo mostrou que um deles conseguiu ser transportado e capturado na cintura de asteroides, numa órbita muito similar à órbita atual de Ceres", destaca o cientista.

Esse número, de 3500 objetos de tipo Ceres, já havia sido estimado por outros estudos, a partir da observação de crateras e de tamanhos de outras populações de astros, situadas para além de Saturno, como aquelas que compõem a Cintura de Kuiper, onde orbitam Plutão e outros planetas anões. "Com o nosso cenário, fomos capazes de confirmar tal número e explicar as propriedades orbitais e químicas de Ceres. Esse trabalho conta um ponto a favor dos modelos mais recentes de formação do Sistema Sola", resume Ribeiro de Sousa.

Um pouco sobre a formação planetária

Um cenário sobre a formação planetária do Sistema Solar, composto a partir das informações mais atualizadas disponíveis, permite entender melhor o estudo em pauta, situando Ceres no quadro geral.

"A partir de evidências observacionais, sabe-se que qualquer sistema planetário – não apenas o Sistema Solar – é formado a partir de um disco de gás e poeira que circunda uma estrela recém-formada. O evento que forma a estrela ainda é objeto de estudo, mas o consenso até ao momento é que ela nasce a partir do colapso gravitacional de uma nuvem molecular gigante", afirma Ribeiro de Sousa.

A existência dos discos protoplanetários não é mera suposição. Ao contrário, respalda-se em observações robustas. É o caso das imagens obtidas pela Agência Espacial Europeia por meio do radiotelescópio ALMA (Atacama Large Millimeter Array), um sistema constituído por 66 antenas situado no deserto do Atacama, no Chile. Com impressionante resolução e riqueza de detalhes, essas imagens mostram discos protoplanetários ao redor de estrelas bem jovens.

"No caso do Sistema Solar, os dados de que dispomos sugerem que o disco protoplanetário seria constituído por 99% de gás e 1% de poeira. Esta seria proveniente de estrelas mais antigas, que terminaram o seu ciclo de vida e lançaram material pesado para o espaço. A poeira que se acumulou ao redor do Sol foi suficiente para formar ao menos os pequenos corpos, os planetas terrestres e os núcleos dos grandes planetas gasosos. Os primeiros sólidos que se condensam no disco protoplanetário são chamados de CAIs (do inglês "Calcium Aluminium rich-Inclusions"). Como o próprio nome indica, eram ricos em cálcio e alumínio. Foram encontrados como inclusões em meteoritos. E as suas idades mais antigas foram datadas em 4,568 mil milhões de anos", informa o pesquisador.

Diversas estrelas jovens, observadas em ambientes caracterizados como berços de formação planetária, foram datadas com idades variando entre 1 e 10 milhões de anos. Esse dado forneceu uma informação muito importante, porque mostrou que a formação de planetas gasosos (como Júpiter e Saturno) ou que possuam ao menos um invólucro gasoso (como Úrano e Neptuno) deve ocorrer, no máximo, nos primeiros 10 milhões de anos de vida da estrela. Depois disso, os discos protoplanetários não possuem mais gás suficiente.

Planetas rochosos, de tipo terrestre, poderiam surgir antes ou depois – não se sabe. Mas outras informações disponíveis mostram que a formação da Terra e da Lua foi um dos eventos mais tardios na génese do Sistema Solar, ocorrido há volta de 4,543 mil milhões de anos. Quanto aos pequenos corpos que compõem o sistema (planetas anões, satélites, cometas, asteroides, poeira etc.), são resultado do resto da formação dos planetas e evoluíram física e dinamicamente antes e depois da fase de gás, por processos como interações com o gás, colisões, capturas gravitacionais e outros.

O processo de formação planetária é bastante complexo. Os estágios vão da poeira, com tamanhos da ordem do mícron (10^−6 m), até planetas várias vezes maiores do que Júpiter. "A poeira acumula-se por adesões e colisões dentro do disco protoplanetário. A atração gravitacional entre essas partículas não é relevante. Mas a atração gravitacional exercida pelo Sol faz com que o gás gire mais devagar do que a poeira. E isso produz um arrasto aerodinâmico muito forte sobre a poeira. A força de arrasto leva as partículas para o plano do disco de gás e desloca-as radialmente em direção ao Sol. Quando a poeira alcança tamanhos da ordem de alguns centímetros, formam-se seixos, que fazem toda a diferença no processo de crescimento planetário. Pois influenciam a velocidade de rotação do gás. Quando as velocidades do gás e dos seixos se igualam, o arrasto do gás torna-se praticamente nulo, o que oferece aos seixos a chance de se concentrarem o suficiente para originarem planetesimais – corpos com tamanhos variando de 10 a 1000 quilómetros, que se tornam os blocos de construção dos planetas e os precursores dos pequenos corpos", narra Ribeiro de Sousa.

No estágio seguinte, formam-se objetos cada vez maiores, por captura gravitacional de seixos e poeira ou por colisões. Quando um objeto cresce o suficiente para ter a massa de três a dez Terras, a perturbação gravitacional que produz no disco de gás faz com que ele migre para órbitas mais próximas da estrela. Quando cresce acima de dez Terras, passa a acumular ao seu redor um invólucro de gás. E, a partir da acumulação do gás, o seu crescimento torna-se muito rápido.

"A formação dos planetas gigantes Júpiter e Saturno produziu uma perturbação gravitacional tão grande que modelou o disco de gás e provocou um novo tipo de migração planetária. Essa fase violenta fez planetas colidirem e planetas serem ejetados para fora do Sistema Solar, até que o balanço gravitacional possibilitou que o sistema como um todo adquirisse um certo grau de estabilidade", conclui Ribeiro de Sousa.

 

 

// FAPESP (comunicado de imprensa)
// Artigo científico (Icarus)
// Artigo científico (arXiv.org)

Saiba mais

Ceres:
Wikipedia

Sonda Dawn:
Página oficial
NASA
"Toolkit" da missão (NASA)
Wikipedia

Formação e evolução do Sistema Solar:
Wikipedia

 
Top Thingy Right