Top thingy left
 
O REGRESSO A VÉNUS E O QUE ISSO SIGNIFICA PARA A TERRA
21 de fevereiro de 2020

 


Vénus esconde um tesouro de informações que podem ajudar-nos a entender a Terra e os exoplanetas. O JPL da NASA está a desenvolver conceitos de missões para sobreviver as extremas temperaturas e pressões atmosféricas do planeta. Esta imagem é uma composição de dados recolhidos pela sonda Magellan da NASA e pelo orbitador Pioneer Venus.
Crédito: NASA/JPL-Caltech

 

Sue Smrekar está desejosa de voltar a Vénus. No seu escritório no JPL da NASA em Pasadena, no estado norte-americano da Califórnia, a cientista planetária exibe uma imagem com 30 anos da superfície de Vénus captada pela sonda Magellan, uma lembrança de quanto tempo passou desde que uma missão americana orbitou o planeta. A imagem revela uma paisagem infernal: uma superfície jovem com mais vulcões do que qualquer outro corpo no Sistema Solar, fendas gigantescas, cinturas montanhosas e temperaturas quentes o suficiente para derreter chumbo.

Agora superaquecido por gases de efeito estufa, o clima de Vénus já foi mais parecido com o da Terra, com água equivalente, em quantidade, a um oceano raso. Pode até ter tido zonas de subducção como a Terra, áreas onde a crosta do planeta afunda de novo na rocha mais próxima do núcleo planetário.

"Vénus é como um caso de controlo para a Terra," disse Smrekar. "Pensamos que começaram com a mesma composição, a mesma água e dióxido de carbono. E seguiram dois caminhos completamente diferentes. Mas porquê? Quais são as principais forças responsáveis pelas diferenças?"

Smrekaer trabalha com o VEXAG (Venus Exploration Analysis Group), uma aliança de cientistas e engenheiros que investiga maneiras de revisitar o planeta que a Magellan mapeou há décadas atrás. Embora as suas abordagens variem, o grupo concorda que Vénus pode dizer-nos algo de vital importância sobre o nosso planeta: o que aconteceu com o clima superaquecido do nosso gémeo planetário, e o que é que isso significa para a vida na Terra?

Orbitadores

Vénus não é o planeta mais próximo do Sol, mas é o mais quente do Sistema Solar. Entre o calor intenso (480º C), as corrosivas nuvens sulfúricas e uma atmosfera esmagadora 90 vezes mais densa do que a da Terra, aterrar uma nave é incrivelmente desafiador. Das nove sondas soviéticas que alcançaram este feito, nenhuma durou mais do que 127 minutos.

Da relativa segurança do espaço, um orbitador podia usar radar e espectroscopia no infravermelho próximo para penetrar por baixo das camadas de nuvens, medir mudanças na paisagem ao longo do tempo e determinar se o solo se move ou não. Podia procurar indicadores de água passada, bem como atividade vulcânica e outras forças que podem ter moldado o planeta.

Smrekar, que está a trabalhar numa proposta de um orbitador chamado VERITAS, não acha que Vénus tenha placas tectónicas como a Terra. Mas ela vê possíveis sugestões de subducção - o que acontece quando duas placas convergem e uma desliza por baixo da outra. Mais dados iam ajudar.

"Sabemos muito pouco sobre a composição da superfície de Vénus," disse. "Achamos que existem continentes, como na Terra, que podem ter-se formado através de subducção passada. Mas não temos informações para realmente dizer isso."

As respostas não apenas aprofundariam a nossa compreensão do porquê de Vénus e da Terra serem agora tão diferentes; podiam restringir as condições que os cientistas precisariam para encontrar um exoplaneta parecido com a Terra.

Balões de ar quente

Os orbitadores não são o único meio de estudar Vénus de cima. Os engenheiros Attila Komjathy e Siddharth Krishnamoorthy do JPL imaginam uma armada de balões de ar quente que voam ao vento nos níveis mais altos da atmosfera venusiana, onde as temperaturas são próximas das da Terra.

"Ainda não há nenhuma missão encomendada para um balão em Vénus, mas os balões são uma ótima maneira de explorar Vénus porque a atmosfera é tão espessa e a superfície tão dura," disse Krishnamoorthy. "O balão é como o ponto ideal, onde estamos perto o suficiente para obter um monte de coisas importantes, mas também estamos num ambiente muito mais benigno onde os sensores podem realmente durar tempo suficiente para fornecer algo significativo."

A equipa colocaria nos balões sismómetros sensíveis o suficiente para detetar sismos no planeta. Na Terra, quando o solo treme, esse movimento ondula na atmosfera como ondas de infrassom (o oposto de ultrassom). Krishnamoorthy e Komjathy demonstraram que a técnica é viável usando balões prateados de ar quente, que mediram sinais fracos acima de áreas da Terra com sismos. E isso nem é com o benefício da densa atmosfera de Vénus, onde a experiência provavelmente transmitiria resultados ainda mais fortes.

"Se o solo se move um pouco, sacode muito mais o ar em Vénus do que na Terra," explicou Krishnamoorthy.

Para obter estes dados sísmicos, o balão precisaria de lidar com ventos tão velozes quanto os de um furacão. O balão ideal, conforme determinado pelo VEXAG, podia controlar os seus movimentos pelo menos numa direção. A equipa de Krishnamoorthy e Komjathy ainda não chegou tão longe, mas propuseram um meio-termo: fazer os balões essencialmente voarem ao vento em torno do planeta a uma velocidade constante, transmitindo os seus resultados a um orbitador. É um começo.

Módulos de aterragem

Entre os muitos desafios enfrentados por um "lander" venusiano, estão as nuvens que bloqueiam o Sol: com pouca luz do Sol, a energia solar seria severamente limitada. Mas o planeta é demasiado quente para outras fontes de energia sobreviverem. "Em termos de temperatura, é como estar num forno de cozinha, no modo de autolimpeza," disse o engenheiro Jeff Hall, do JPL, que trabalhou nos protótipos de balão e módulo de aterragem para Vénus. "Realmente não há outro lugar, no Sistema Solar, como este ambiente de superfície."

Para começar, a vida de um módulo de aterragem seria reduzida pelos componentes eletrónicos, que começariam a falhar após algumas horas. Hall diz que a quantidade de energia necessária para alimentar um dispositivo de arrefecimento capaz de proteger o módulo exigiria mais baterias do que o "lander" podia transportar.

"Não há esperança de refrigerar um módulo para o manter fresco," acrescentou. "Tudo o que podemos fazer é diminuir o ritmo a que se destrói."

A NASA está interessada em desenvolver "tecnologias quentes" que podem sobreviver dias, ou até semanas, em ambientes extremos. Embora o conceito de módulo venusiano de aterragem de Hall não tenha chegado à próxima etapa do processo de aprovação, levou ao seu trabalho atual relacionado com Vénus: um sistema de perfuração e amostragem resistente ao calor que poderia recolher amostras de solo venusiano para análise. Hall trabalha com a Honeybee Robotics para desenvolver os motores elétricos de próxima geração que perfuram em condições extremas, enquanto o engenheiro Joe Melko do JPL projeta o sistema de amostragem pneumática.

Juntos, trabalham com protótipos na Grande Câmara de Testes de Vénus do JPL, com paredes de aço, que imita as condições do planeta até uma atmosfera composta por 100% dióxido de carbono sufocante. A cada teste bem-sucedido, as equipas levam a humanidade um passo mais perto de forçar os limites da exploração neste planeta mais inóspito.

 


comments powered by Disqus

 


Uma equipa de engenheiros do JPL testam se um grande balão pode medir sismos a partir do ar. A equipa propõe medir sismos venusianos a partir da atmosfera superior, muito menos quente, do planeta, usando uma armada de balões.
Crédito: NASA/JPL-Caltech


// JPL/NASA (comunicado de imprensa)

Saiba mais

Vénus:
CCVAlg - Astronomia 
Wikipedia

Sonda Magellan:
NASA
Wikipedia

VERITAS:
JPLNASA
Wikipedia

 
Top Thingy Right